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Abstract

The integration of nonlinear neural network methods

with conventional linear regression techniques is

demonstrated for representative wind tunnel force

balance data modeling. This work was motivated by

a desire to formulate precision intervals for response

surfaces produced by neural networks. Applications

are demonstrated for representative wind tunnel data

acquired at NASA Langley Research Center and the

Arnold Engineering Development Center in

Tullahoma, TN.

Introduction

Wind tunnel testing technology activities conducted

and sponsored by NASA Langley Research Center
since 1997 have focussed on the introduction of

tbrmal experiment design principles to empirical

aerodynamics _. These activities have served to bring

to bear on aerodynamic research problems the

powerful machinery of formal experiment design first

introduced by R.A. Fisher and associates early in the

20 th century 2 and used successfully since then in a

wide range of industrial, scientific, and engineering

applications. Collectively, these methods are
described at NASA Langley as Modern Design of

Experiments (MDOE), after a phrase from the

literature of formal experiment design that

distinguishes these methods from what is commonly

called classical experiment design.

Classical experimentation methods have been popular

for hundreds of years, and form the basis of

conventional wind tunnel testing procedures in use

today. The defining feature of classical testing

methods is an error control strategy that requires each

independent variable to be changed one at a time,

while holding all other variables constant. This

method, formally described in the literature of

experiment design as One Factor at a Time (OFAT)

testing, typically involves changing the levels of the

independent variable under study as a monotonically

increasing function of time. This is the basis of the

common polar, for example, which is a popular wind

tunnel testing data structure that consists of a series

of angle of attack levels set sequentially in a

monotonically increasing sequence, with all other

independent variables (Mach number, angle of

sideslip, etc) held constant.

MDOE practitioners recognize certain weaknesses in

the OFAT testing philosophy that can be overcome

by formal experiment design methods that essentially
defend against these shortcomings 3. Contrary to

assumptions inherent in OFAT testing, we never

actually "hold everything else constant" when we

change one variable at a time in a wind tunnel test.

We simply make no intentional changes in the other

independent variables. Changes do occur,

nonetheless. For example, flow angularity

fluctuations cause effective unscheduled changes in

the angle of attack, blockage effects can cause an

equivalent shift in Mach number, and cross-flow

temperature gradients can induce assorted variations

(especially in cryogenic high Reynolds number

testing). Instrumentation and data systems drift over

time, subtle differences can exist in procedures and

techniques from one operator crew to another, etc,

etc. Despite the best eflbrts to keep these factors

constant, variations in individual data points are

inevitable.
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A centralweaknessof OFAT testing is that it is

single-point oriented, so the combined effects of all

inevitable failures to "hold everything else constant"

are directly reflected in the errors that exist in each

individual data point. By contrast, MDOE methods
are "data-ensemble" oriented. The data set is

analyzed as an integrated whole, rather than on a

single-point basis. The focus is on defining

relationships between each response variable and the

independent variables that cause it to change, if

these relationships are well understood, it is possible

to predict responses for any combination of

independent variables in the range of those tested, not

simply the specific points set in the test.

Furthermore, such mathematical relationships (called

response surface models) can be used to predict

responses in other circumstances, e.g. in other tests or

in flight. By focusing on the response surface as a

whole rather than individual data points, and by

adopting tactics intended to ensure that all errors are

identically and independently distributed, the effects

of local single-point errors can be made to

substantially cancel. This results in higher precision

than can be achieved on a single-point basis.

Furthermore, the residual degrees of freedom - those

points in excess of the minimum required to define

the response surface - are available to assess the

quality of predictions made by the model.

The most common method for defining response

surface models in MDOE wind tunnel testing to date

has been linear regression. Linear regression results

in low-order polynomial functions of (possibly

transformed) independent variables that can produce

adequate predictions for a wide range of practical

applications. This type of model is well suited for

limited ranges of the independent variables, but in

complex situations that can occur in certain

aerodynamic testing this may not cover the entire

range of interest. For response relationships rich in

higher-order components, such as those featuring the

near-discontinuous responses that are not uncommon

in transonic aerodynamics, for example, extensions to

conventional low-order linear regression will be

needed to produce response surfaces adequate for

reliable prediction. One promising possibility is the

application of neural network methods to nonlinear

response problems.

In the present paper, we have replaced the

polynomial model by a Neural Network in

constructing the Response Surface. The range of test

design points could be enlarged to cover most test

variables required range since the neural networks are

capable to map a highly nonlinear hyper-surface. The

identification of underlying model could also be

studied from the response surface. In addition to data

interpolation performed by the neural networks, the

analysis of derivative functions, variable sensitivity

and interaction effects could be investigated even

though we have not included in the present effort.

The widely used algorithms of neural networks in

mapping function or constructions of response

surfaces are the "Back Propagation" and "Radial
Basis Function Networks". Since the model of neural

networks is nonlinear in nature, the confidence and

prediction interval analysis is not _asible by adapting

the linear regression approach based on the statistical

theorem. However, the importance of the confidence

and prediction intervals of a constructed response

surface is recognized for the MDOE application.

Without the capability to estimate confidence or

prediction intervals, the neural network is unable to

provide the fitting goodness characteristics or the

imperfection in the model. The confidence interval is

the way to identify the systematical errors in the

model or the model adequacy. Furthermore, the

prediction confidence interval is able to estimate or

forecast the uncertainty of response surfaces of the

future observations. This is particular important to

know the expected uncertainty since the data are not

even available in a region of interest. Therefore, the
effort of this work has been devoted to construct a

special type of neural networks including the feature

of linear regression to compute the response surface

and its confidence and prediction intervals.

Radial Basis Function Network Application to
Tunnel Data of the Alpha-Jet Model

Two neural network algorithms, which are capable of
modeling response surfaces, have been selected to

integrate with multiple linear regression to compute

precision intervals. In the first approach, the Radial

Basis Function Network (RBFN) is introduced to

compute precision intervals. A brief description of

Radial Basis Function Network and the integrated

computation procedure of Confidence and Prediction

intervals with the linear regression analysis are given

in Appendix 1. As an example, the application to

modeling force data as a function of angles of attack

for the TST Alpha Jet Model as shown in Figure 1 is

included for data 4 acquired from Tunnel 16T at the

Arnold Engineering and Development Center

(AEDC)

The force coefficients 4 were taken at Mach Number

0.8 and Chord Reynolds Number 1.5 millions under

transition-free configuration in the present

application. The angle of attack ranges from -4 to 10
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degree. The results obtained from the RBFN and the

original data are plotted in Figure 2. The comparison
of RBFN results and tunnel data is within the

accuracy of tunnel measurement. The results of 95%

Confidence Interval Half Width on the response

surface from Eq. (I-4) are also shown in Figure 2 as

the error band by the Coef-Hl (or -UPPER) and Coef-

LO (-LOWER). The results are satisfactory as

expected. In Figure 3, the 95% CIHW (Confidence

Interval Half Width) is and Coef-Residual, which is
defined as

Coef-Residual = Coef-RFBN - Coef-DATA

are plotted for the purpose of comparison. The

prediction interval was not computed in this example
since we do not have sufficient data to reserve as the

test file. The prediction interval formula will be

applied in the second example.

Back Propagation Neural Network Application to

Tunnel Data of the Alpha Jet Model.

In the second approach, the integration of back

propagation neural networks and multiple linear

regression has been constructed to compute response

surface and the precision confidence interval.

Although the RBFN is capable to map multiple

variable function with the rapid training process, the

majority of function mapping has been carried out by

Back Propagation (BP) Neural Networks. It is well

known that the BP Neural Network has the powerful

capability of function mapping to model the

nonlinear response surface in a large numbers of

parameters in a wide range. Thus the determination

of the precision intervals for the BP nets is also

necessary in the function mapping of neural networks

application.

The typical back propagation network has an input

layer, an output layer and one or more hidden layers.

The network relationship is a non-linear function.

The analysis of confidence and prediction intervals
based on the statistical method is not available. The

concept of integration of the linear regression method

into the last hidden layer of the back propagation

network (i.e. the hidden layer just before the output

layer) is enable to map the response surface but also

to evaluate the confidence and prediction intervals of

the response surface. This is a special case of linear

regression model as named in Ref. 5. The integration

of the process is described as follows.

The first step is to train a selected design of a back-

propagation neural network for the desired response

surface with its inputs. Alter the network is

satisfactorily trained, the linear regression will be

incorporated in the trained BP nets. The processing
elements of the last hidden in the nets will be treated

as regressor variables in a multiple linear regression

model. With the trained weights of the BP nets, each

observation will provide the value of regressor

variables, _1, and the response, F, known as the

desired output for each input data set as

K

F='_w,O, +wo+e
i=1

Where the _, 's are regressor variables functions of

the input layer data and all weights in the trained

Back Propagation (BP) Neural Network. The w, 's are

known as the regression coefficients. The error (or

residual) of the regression is v,. The input variables
in the cases of wind tunnel data include Mach

number, Reynolds number, Angle of Attack and so

on. The outputs, F, are force coefficients, e.g. lift,

drag and pitching moment, for model lbrce data.

In addition, a modified Back Propagation Net can be

enhanced by introducing functions in terms of input

variables linearly independent. The modified net.
which is called as Functional-link nc_s 6, is to enhance

the original representation of input. The additional

dimensions produced by these functions may be

learned more readily in the hyperplanes. These

functions typically consist of outer-product and

functional enhanced modes of input variables. Some

of the superior qualities of Functional-link nets have

been demonstrated in the supervised train net by

many examples in the literature. ]'his technique of a

simple representation of the net is illustrated in

Figure 4. The Functional-link Back Propagation nets

have been applied in the present work to map all
force coefficients of a force model in the next

section,

This integrated method applied to tunnel force data of

the Alpha Jet Model with three typical variables,

Mach number, Reynolds Number and Angle of

attack, which consists of 25 test configurations

conducted in the National Transonic Facility at

NASA/Langley Research Center. Each test

configurations ranges from 10 to 22 points of angles

of attack. The total number of test points is over four

hundred sets of data. The integrated method is able to

map all force data into a single neural network. The

confidence and prediction intervals associated with
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thisneuralnetworkarecomputedbyEq.(l-4)and
Eq.(1-6)fortheAlphaJetModeldata,respectively.

Inthepresentinvestigation,thedatarangesofMach
Numberfrom0.6to0.9andChordReynoldsnumber
from 2.7 to 10 millionsfor transition-free
configurationsareavailable.The angle of attack

ranges from -4 to 10 degree for most test conditions.

additional training data can be acquired until

adequate predictions are demonstrated throughout the

inference space of interest. This has the potential of

simultaneously defining prediction models that

satisfy design precision requirements while ensuring

that no more data are acquired than is necessary to do

SO.

With half of all database for the training cases of the

neural network, the remaining half set of data are

reserved for the testing cases. The force and moment

coefficients plots of a typical training case for Mach

Numbers 0.8 are shown in Figure 5. It can be seen

that the comparison of Neural Network-LSM

prediction and tunnel data is good for those typical

training flow conditions. The Coef-H! (-Upper) and

Coef-LO (-Lower) are also plotted in Figure 5 for the

range of the 95% confidence intervals. The 95%

CIHF (confidence interval half-width) and Coef-

Residual at tunnel condition M=0.8 are plotted in

Figure 6. The results are satisfactory.

Concluding Remarks

Multiple linear regression methods have been

integrated into two neural network algorithms, the
Radial Basis Function Network and the Back

Propagation Network. Both neural networks, which

have nonlinear characteristics, are capable of

constructing nonlinear response surfaces from the

wide range of data sets obtained in typical MDOE

applications. Response surface precision intervals

(confidence and prediction intervals) are determined

by linear regression analysis. Applications of the
Radial Basis Function Network and Back

Propagation integrated method to the force data sets

of an Alpha Jet Model obtained from AEDC Tunnel

16T and NASA Langley NTF have shown

satisfactory data mapping results. These results

suggest that there is significant potential for neural

networks to be applied in wind tunnel testing.

With their non-linear adaptive training and cross-

validation capabilities integrated with formal,

quantitative goodness-of-fit assessment techniques, it

may be possible to largely automate the examination

of complex, non-linear aerodynamic phenomena.
MDOE methods can be used to select information-

rich combinations of independent variables that are

then used to train a neural network. Predictions by

the network can be compared to an independent

confirmation data set to determine if an adequate

percentage of confirmation points lie within the

precision interval of the response surface. If not,
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Appendix I

The Radial Basis Function Networks

The Radial Basis Function Network (RBFN) with N

inputs and a scalar output, which is depicted in

Figure I-1, can be expressed for a function

approximation as

the output function. The linear regression will be

used in the present application. Therefore the

confidence interval and predictive confidence interval

can be determined by the available statistical method
for this radial basis function network.

The description given herein has only a single

(scalar) output for notational simplicity. There is no

limitation of number of outputs. To extend the

multiple outputs, another sets of weights should be

introduced for additional desired outputs.

i=l

Where xj's are the inputs, ¢_, 's are the given basis

function and w, 's are the weights. The Gaussian
function is chosen as the Basis Function as shown in

Figure I-I. Tbe Gaussian Function with a radial-basis

function argument that is used to form a network is

called Radial Basis Function Networks (RBFN). The

Gaussian function of the input variable xj's is of the
form

Where

r.J_ _

_bl(rj2 1= e 20. I (I-2)

% 's are the centers or mean values and _ '_'_

N 0-3)

:E(,,-c0)
j=l

standard deviation of a normal distribution function

of statistics.

By specifying a set of inputs, xj's and the

corresponding desired output F, the values of the

weights w, 's can be determined using the linear Least

Squares Method (LSM).

The above-described RBFN is a special case of

Multiple Linear Regression models. The F is the

desired output and is called as the Response. The _i is

known as regressors, which are a specified function

of inputs xj %

The pattern unit (or regressors) in a RBF Network

consists of center, c,j and deviation, cr, for each

Gaussian function. A clustering algorithm is applied
by Moody & Darken 7 to determine the value of

centers and a nearest neighbor heuristic to determine

the deviation, c_,. The Linear Regression or a

gradient descent algorithm evaluates the weights of

Implementation of RBFN and Computation of
Precision Intervals

]'he RBFN algorithm is based on Moody and Darken

work 7. As the trained RBNF is accepted, the values

of the regressors are determined for specified inputs

and the target output. With these sets of inputs and

corresponding outputs, the Precision Intervals for

mean response can be obtained by the linear

regression analysis. The Confidence Interval and

Prediction lnterval are able to compute that are based

on the standard formulae given in the linear

regression references (e.g. Ref. 8). The formulae are

listed as follows:

A 100(i-a) percent half-width of confidence
interval (CIHW) on the mean response at a

particular point _l/. _1:. _J_....... (Plk is expressed as

t_/2..-i cr x/xl,(X, X)__x _ (I-4)

Where ta.,,.p is t-distribution quantiles, _2 is sum

of squares residual/degree of freedom and

x_'= [1.¢,,._1__...... ¢,_]

(I-5)
X' = [x,, x_ ........ x. ]

A 100(I-a) percent half-width of prediction interval
(PIHW) for the future observation is of the form

t_ 2.._per 41 + xl'(X' X) < x,
(I-6)
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Figure I-1. Structure of a Radial Basis Function Network
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Appendix tl
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Figure I. Transonic Technology Wing (TST Alpha Jet) Model

From Ref4.: Laster, M.L., Stanewsky, E, Sinclair, D.W. and Sickles, W.L.,

"Reynolds Number Scaling at Transonic Speeds," AIAA paper 98-2878, 1998
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Lift Coefficient -- 95% Confidence Interval Half-Width

and CL-Residual, 16T Data
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Pitching Moment Coefficient -- 95% Confidence Interval Half-Width

and CLM-Resldual, 16T Data
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Figure 4. A Functional-Link Back Propagation Neural Network with Regular Tunnel Variable Data Inputs

and Underlying Model Functions in terms of Regular Data as Additional Inputs.
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